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ABSTRACT

This paper studies a feedback queueing systemtwithparallel servers having different service rat®sivals
follow Poisson distribution. Service times for bdtie servers are exponentially distributed. Bussiogedistribution
for this system is obtained using generating fmctechnique. A few special cases of interest e @erived. Results

are illustrated with numerical examples and compgraphically.
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INTRODUCTION

The research work in queueing theory led to martgresions in basic queueing theory due to its Sigpnite
in fields like telecommunication, aviation, manufaing and production, transportation and many mdrenumber
of authors have studied systems with two serverzaitallel. Morse [9] considered two independennbhgs of service
facility, one having the service raZ(a’I.— J),u, wheregg(o,lj. Arrivals join a common waiting line, unit at thead of

2
the waiting line enters one or the other branckesVice facility with relative frequencieg and1l— 0 . He obtained the

steady state solutions for the cases when no gaallewed before the service facility.

Saaty [11] studied a continuous time first comstfgerved queueing problem with two parallel sereach
having a different service rate. He obtained tleady state probabilities for the number of unitgha system/queue.
Gumbel [6] considered a more general queueing prolilaving a finite number of servers, each witlifiergnt service
rate. He also obtained the steady state probakilfor the number of units in the system. Themoig a growing interest
in the analysis of queueing systems with feedbbatkeedback queueing systems, the customers géticadd service if
they are not satisfied from their previous servigkany researchers paid their attention towards divisction. Tackas,
L.[14] , Thangaraj & Vanitha[13], Shardha & Garg[l2nd Kumari[8] studied a number of queueing systemith
feedback. Garg and Singla [4] studied a queueindeiwith two service channels having different sgrwates. The
arriving units are also given the option of rejagithe system with a definite probability afterrgpiserved once. They

obtained transient probabilities and steady-staligtion for the model.

Busy period analysis plays a vital role in the gtoflqueueing problems for forecasting the behawfajueueing
systems. Performance analysis of busy period isptetely dependent on the busy period distributibrihe queueing
model. In particular, the busy period analysisnipartant from servers’ point of view and is alsdphd in the efficient
planning of the system resources. The distributitihe busy period lengths has been studied bywbeu of investigators,
among them are Kendall [7], Pollaczek[10], and KtifBh.
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The present paper is concerned with the busy pe(tbeé periods during which the server is contirslypbusy) in
a feedback queueing system with two servers hadiffigrent service rates when no restrictions ase@dl on the queue
length. Laplace transformation of probability geatarg function for busy period of the system isabbéd. Results are

illustrated with numerical examples and are comggraphically.

The practical situation which corresponds to thevabsituation can be that of two machines of défferservice
rates engaged in repair work. After first repag tomponent is checked, if it is not found satifacthen it is again sent
in the queue for second repair otherwise it leahessystem. However after second service the coemgdeaves the
system definitely. The Manager can know distributad busy period duration for the repairshdpe feedback queueing
system investigated in this paper is described by the following assumptions:

(i) Arrivals are Poisson with parameter

(i) Service times are exponentially distributed withgoaeters pand  for the first and second channels

respectively.

(iii) When both the channels are empty, an arrivingjoims first channel with probability;@nd second channel with

probability & so that a+a -1.

(iv) After current departure, the next customer will@gphe service channel for the first time with lmbility ¢, and

for the second time with probability, so thatc; + ¢, = 1.

(v) The probability of rejoining the system is p andttbf leaving the system is q for the units getgegvice first
time, so that p+q =1. However the units will haweléave the system definitely after getting senficethe

second time.
(vi) Units are taken for service in their order of aativ
(vii) The stochastic processes involved, viz

a. arrival of units

b. departure of units, are statistically independen

Definitions

Pn(k) (t) = Probability that there are n units in the systdrtime t and the next unit is to depart for tinst time

or second time according as k=0 o= 0

Pn (t) = Probability that there are n units in the systgrtime t.Nn = 0
P.(t)=P°(t)+P®(t).n=0 2.1)

Pl(k) (]_,O,t):ProbabiIity that the unit is in the first chan@gltime t and the unit is to depart for the fiiste or

second time according as k=0 or 1.

F;“)(O;Lt): Probability that the unit is in the second charadime t and the unit is to depart for the fiigte
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or second time according as k=0 or 1.
R(10t)=R°(10t)+R(101)
R(01t)=R“(0Lt)+R(01t)
RY(t)=R"(101)+R¥(0Lt) k= 01
R(t)=R°(t)+R"(t
P(t) = P,(10,t) + P,(0 ) Initially, no unitis present in the system iR (0) =1 .

BUSY PERIOD DISTRIBUTION

d
The probability density function for the busy peridistribution is given byd—t Po(o)(t) and is obtained using the

following set of difference -differential equations

9 pl0)= i epl91001) + P30} o o)+ 9 0.} e

% PO(10,t) = -(4 + 1) (10,t) + e, {aPP () + PO ()} (2:3)

d

o PO(10,t) = =(A + 24,) PO (10,t) + 12,6, {aP (t) + P (t)} 2.
+ 1, pa,R (10,t) + 11, pa, P (011)

% PO(0Lt)=~(1 + 1,)PO(01t) + e {aPP (1) + PO t)} (2.5)

d

& PY(0Lt)=~(1 + 1,) P (0L 1) + e, {aP (1) + PO ()} (2.6)
+ 1, 0a,P (10,t) + 11, pa, P (01L1)

d

S PO = -0+ + )R (0)+ ARE() n>2 @.7)

+ (i, + 11,)e{aPQ ) + PLE)+ (1, + 12, )e, PO 1)
d o0 = o)
o PU ()= =1+ 1, + 1,) PO (t) + PY,(t) 22 8

+ (1, + 1), {PQ 1)+ PEL O+ (1, + 12, ), PP (1)

with initial conditions P, (1,0,0) =a, and R?(010)=a,
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Taking the Laplace Transformationﬁn(s):Ie'StPn(t)dt Re S>0of (2.2) - (2.8) and dividing by
0

(1o + 115)

s Ego)(s) = {qBiO)(10 s)+ po (1,0 s)}

(y + 11,) ' " i 2.9)

+ rz{qﬂo) (01,s)+ pY (o1, s)}
—(0) _ a, —(0) =@

p+r + P: (10,s)= +rc{qP s)+ P s} (2.10)
{ l(M+%ﬁ1( )(m+m)21 (S Pels)
{,0 +r, + }I?’il) (10,s)= FZCZ{QE(;) (s)+ Py (s)}

(,U1 + ,Uz) (2.11)
+r, pa15§°) (10,s)+r, paf’go) (01,s)
=(0) a —(0) =@

P+, + P: (01,s)= Z +rc{qP s)+P s} (2.12)
{ © ﬂﬂ}l( )= (s ) TP )P
{oer s 2 P09 = ot 9+ o)

(14 + 12,) (2.13)
+1,pa,Pr (10,9)+1,pa, i’ (01,9)
S =07y _ =0 —(0) =@ —(0)
p+1+ (i ) Pn'(s) = pPna(s)+ c,JgPna(s) + Pru(s){+ c,pPn (s) ,n>2 (2.14)
1 2
S =@y =0 —(0) =@ —(0)
p+1+ i+ 72) P (s) = pPna(s) + c,jgPna(s) + Pru(s)[+c, pPn (s) ,n=2 (2.15)
1 2

=A
Wherep—%ﬂl+’uz) )

Definitions

GOz 1) = Z P (0)2"
n=1

cW(z0) = Z P (p) 27
n=1
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g /4%+ﬂ9' f2 (4, + 11,)’

6(0) (z,5) = J e stG (7, 1) dt
0

E(l) (z,5) = f e St G (z ) dt
0
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G(z.t) = GO(z,1) + GAU(z,1) G(z.s) = [, e'G(zt) dt withlz] <1
Laplace Transformation of Probability Generating Function for the Busy Period Distribution

(lefuz)B(z)—zA(z){(q+pz)ﬁ(1°)(s)+l_>(11)(s)}
[ pE(z){rlﬁ(lo) (1,0,s)+r2ﬁgo) (0,1,5)} ]
+22+B(2){r2P V) (1,05) +1,P (01,9}
+E(z){r2ﬁgl)(1,0,s)+r11_>(11)(0,1,5)}

{A(@)-c2HA(2)—c1#(q+pz)}-c1c2+(q+pz)

G(z,s) =

p=2(n +u);lzl <1 (2.16)

where A(z) = {—pz2 . (p +1+— )z}

(by 1)
B(z) = {A(z) — czp = (1 — 2)}
E(z) ={A(@) +c1p*(1—2)
Let D= K;(z) *Ky(z) — cyc3 * (q + pz)

— ) _~2 S _ —|1_~s2 5 _
where K;(z) = [{ pz* + (p +1+ (Hlﬂlz)) z} cz] , Ky (2) [{ pz* + (p +1+ (P1+P2)) z} ¢, *(q+ pz)

ObviouslyK, (z) and K, (z) have two zeroes inside the unit circle.

Letf(z) = K;(2) * K, (z) andg(z) = ¢;¢; * (q + pz)

()| = [K; (@] * [Kz (2)]

N | § B S —
_”{ pz +(p+1+(u1+“2))z} CZ]

2 {{+ el + e} for ——=C+in,lzl =1 > ¢, 2 [g(2)]
Hyti,)

*

[{—pzz+(p+1+ > )z}—cl*(q+pz)]

(hythy)

Hencelf(z)| > |g(z)| on |z| =1

Since all the conditions of Rouche’s Theorem atisfsad, so the denominator D in (2.16) has twmesrinside
the unit circle. Let these zeroeshgm = 0, 1). Numerator must vanish for these two zeroes diifess) is an analytical

function ofz. These two equations along with equations (2.10L1), (2.12) and (2.13) will determine the six nowns

P9(1,0,5),P2(0,1,5), P (1,0,5) , P (0,1, 5), PL(s) and P{Y)(s). Hence the generating functiGifz, s) is completely
_ _ _ _ d
known. Using Laplace Inverse Bf*(1,0,s), P{”(0,1,s),P"(1,0,s) andP*(0,1,s) in the equation (2.2),d—t Po(o)(t)

can be obtained which in turn will give us probaypitlensity function of busy period distributiorrfine model.
SPECIAL CASES

(i) When there is no feedback

Puttingg =1, p=0,c, =1c, =0, P(s) = P,(s), BV (s) = 0,
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zz{r2F1 (1,0,5) 414 P (0,1,5)+—~ }_2131 (s)
gty

—pz2+( pr1+——z{-1
{ Pz (p (R z

p=2/(n,+1); Izl <1 (2.17)

G(z,s) =

(i) When there is only one server i.e. M/M/1 system witfeedback

Puttingt, = t, i, =0,r, =11, =05, (1,0,s) =7, °(s), B, ”(0,1,5) = 0,

E(l)(l,o, s) = §1(1) (s) and Fl(l)(o,l, s) = 0 in equation (2.16), we get

(22 /W{AR) — c2p(1 — 2)} - 2{{aA(2) — c;p?2(1 — D)}P(5) + APV (5)
G(z,5) =

{(A(Z) —ci(q+ PZ))(A(Z) - Cz)} —(q+pz)cc,

p=A/p; [zl =1 (2.18)
where A(2) = {- p22 + (p +1+EJZ} (iii) When there is no feedback and there is only one sear
Y7

Putting 14 = 1, 1, =0,r, =11, =0,P,(1,0,5) = P,(s), P,(0,1,5) = 0 in equation (2.17), we get

ZTZ—ZﬁﬂS)
P T A lzl <1 (2.19)

(H1+u2)

G(z,s) =

{—pzz+(p+1+
This coincides with Laplace transformation of bpsyiod duration generating function of M/M/1 model.

NUMERICAL AND GRAPHICAL SOLUTION

Numerical solution of equations [(2.2)-(2.8)] istaimed using MATLAB programming and results arespreed

graphically. In Figure 1, the distribution functi@md density function for the duration of a busyiqguis plotted for the

casep = 03 Clz 06, q= 075 I"l= 0.6, a1= 0.7.

Density Function and Distribution Function of Busy Period Duration
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7 - - digtrbtn fn (q=0.75)
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'
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Fig. 1

Figure 1
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Density function of busy period duration for diéet values ofp keeping other parameters constant is plotted in

Figure 2. The set of values forp is{0.2,0.4,0.6,0.8}. The other parameters were fixed at

Cl= 06, g= 075 r1= 0.6, al = 0.7 . Distribution function for busy period durationasso compared for different

values of p (keeping other parameters constant) through Figure

Density Function for the Busy Peried duration for different values of p
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Distribution Function for the Busy Period Duration for differentvalues of p
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Figure 3

Behavior of the busy period duration density fumetiand distribution function with changing probéilg

(probability of leaving the system after gettingsfiservice) is shown in Figure 4 and Figure 5.

www.iaset.us edit@iaset.us



62 Navel Singla

Density Function for the Busy Period duration for different values of q
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Distribution Function for the Busy Period Duration for different values of q
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Figure 5

Density function and distribution function of bupgriod duration when all the servers are busy arepared

with those of total busy period duration througbufe 6 and Figure 7.

Density Function of Busy Period duration
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Distribution Function for the Busy Period Duration
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